

Article

Advances of the Armada de la República de Colombia in the Design and Implementation of an Immersive Riverine Combat Boat Simulator Prototype

Avances de la Armada República de Colombia en el Diseño e Implementación de un Prototipo de Simulador Inmersivo de Bote de Combate Fluvial

Luis Escoria Valera ¹ and Aldo Lovo Ayala ²

¹ Facultad de Ingeniería, Universidad Autónoma del Caribe, Barranquilla, 080003, Colombia;
lcescoriavalera@gmail.com

² Decanatura de Investigación y Doctorado (DIDEN), Escuela Naval de Cadetes "Almirante Padilla", Armada Nacional de Colombia, Cartagena, 111321, Colombia aldo.lovo@enap.edu.co

* Correspondence: lcescoriavalera@gmail.com

Citation: Escoria, L.; Lovo, A. . Advances of the Armada de la República de Colombia in the Design and Implementation of an Immersive Riverine Combat Boat Simulator Prototype. *OnBoard Knowledge Journal* **2025**, *1*, 7. <https://doi.org/>

Received: 15/05/2025

Accepted: 21/06/2025

Published: 10/07/2025

Copyright: © 2025 by authors. Licensed by Escuela Naval de Cadetes "Almirante Padilla", COL. This article is freely accessible distributed in the terms and conditions of Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

Abstract: La Armada República de Colombia (ARC) es globalmente reconocida por su activo rol contra grupos ilegales. Debido a la necesidad de adaptabilidad en entornos geográficos diversos, de capacitación de sus hombres, y por eficiencia en el uso de recursos, la ARC desarrolla una opción tecnológica avanzada para complementar y mejorar el entrenamiento de combate fluvial en las escuelas de formación de infantería de marina mediante la integración de un sistema mecánico de grados de libertad con visualización inmersiva generada por software generativo de escenarios virtuales y el refuerzo de la doctrina de combate en los ríos del país. Se hace énfasis en los roles del piloto y artillero, permitiendo que al personal instructor el seguimiento del desarrollo de habilidades y conocimientos requeridos en el campo de batalla y en el respeto de los derechos humanos. Actualmente, el proyecto se encuentra en desarrollo y se han logrado avances en el diseño de la plataforma mecánica, la instrumentación requerida para el entrenamiento del piloto y la integración con un simulador de combate. La red de interconexión se encuentra diseñada y los

Keywords: River combat; Simulator; Immersion; Training; Technology

Resumen: La Armada República de Colombia (ARC) es reconocida mundialmente por su papel activo contra grupos al margen de la ley. Por necesidades de adaptabilidad en entornos geográficos diversos, de capacitación de sus hombres, y por eficiencia en el uso de recursos, la ARC desarrolla una opción tecnológica avanzada para complementar y mejorar el entrenamiento de combate fluvial en las escuelas de formación de infantería de marina mediante la integración de un sistema mecánico de grados de libertad con visualización inmersiva generada por software generativo de escenarios virtuales y el refuerzo de la doctrina de combate en los ríos del país. Se hace énfasis en los roles del piloto y artillero, permitiendo que al personal instructor el seguimiento del desarrollo de habilidades y conocimientos requeridos en el campo de batalla y en el respeto de los derechos humanos. Actualmente, el proyecto se encuentra en desarrollo y se han logrado avances en el diseño de la plataforma mecánica, la instrumentación requerida para el entrenamiento del piloto y la integración con un simulador de combate. La red de interconexión se encuentra diseñada y los

sistemas de visualización ya cuentan con los equipos seleccionados para su implementación. Las pruebas de los componentes mencionados a través de un prototipo a escala, muestra lo efectivo que son este tipo de simuladores en el incremento cualitativo del entrenamiento en las escuelas militares.

Palabras clave: Combate fluvial; Simulador; Inmersión; Entrenamiento; Tecnología

1. Introduction

The public order situation experienced by the country over recent decades has positioned the Colombian National Navy (Armada Nacional de Colombia, ARC) as an international benchmark in riverine warfare [14], as well as in the training of Marine Corps personnel for the acquisition and development of the competencies required to integrate a riverine unit [17], ranging from boat handling to weapons synchronization [9]. The costs associated with this training such as equipment wear, personnel transportation [13], and preventive and corrective maintenance, are typically high. In addition, the limited availability of resources such as fuel and ammunition [6] restricts feedback opportunities and, consequently, the assimilation of riverine doctrine and the correction of evident errors, such as proper boat positioning for firing or enabling the gunner to hit intended targets [7]. Furthermore, the availability of these courses at the Riverine Combat School (ESCOFLU) is constrained by the four boats assigned for instruction in riverine combat, riverine pilot, and riverine gunner courses [11].

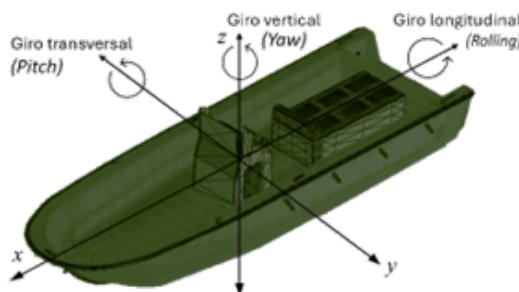
This context encourages the implementation of simulation technologies that facilitate student learning while reducing the costs and risks associated with full training aboard a riverine combat boat. Although ARC schools have virtual training rooms [8], these do not provide a fully immersive experience and, in most cases, are acquired from foreign manufacturers, which limits the customization, modification, and updating of training missions [1].

This project aims to design a prototype of an immersive riverine combat boat simulator, to be developed domestically by Navy personnel and their collaborators within naval facilities. This approach ensures a simulator model tailored to the needs of riverine combat doctrine, the competencies established in academic curricula, the evaluation rubrics defined by instructors, and the learning styles of students.

2. Contributions

This work presents the following contributions:

- The design of an immersive riverine combat boat simulator prototype, integrating a mechanical motion platform with a virtual simulation environment to support pilot and gunner training.
- The development of a Stewart-type mechanical platform concept with two to three degrees of freedom, capable of reproducing realistic motion dynamics and supporting representative operational loads.
- The definition of a semi-immersive visualization and simulation architecture, aligned with riverine combat doctrine, enabling the generation of performance metrics for training and evaluation.
- The implementation and validation of a scale prototype, demonstrating the feasibility of system integration, motion control, and interaction between the mechanical platform and the virtual combat simulator.


3. Methodology

The prototype design consists of the following essential components: a mechanical platform that emulates the movements of the BOSTON WHALER Piraña-type boat used by the Navy in riverine combat, enabling training in the pilot role; a virtual environment that simulates the natural combat scenario, including details characteristic of Colombian

geography, providing an immersive experience together with a visualization system; and a gunnery training system that interacts with the virtual simulation and generates evaluation metrics for the riverine gunner role.

3.1. Mechanical Motion Platform

Given the dynamics of the boat, motion simulation can be approximated based on two of the six axes shown in Figure 1. These basic movements are: rotation about the y axis or transverse axis (pitch), which occurs when the vessel is accelerating or when it is subjected to the undulation of the water surface; and rotation about the x axis or longitudinal axis (roll), which occurs when the boat heels to reorient to port or starboard ([20]). Strictly speaking, motion can occur along all axes; however, these two are the most significant in this case, since in a river the dynamic effect of tides and large waves on the boat is much smaller than at sea. Additionally, this reduced effect can be sufficiently simulated through the relative motion of the visual projection of the environment. Nevertheless, in the pursuit of increased realism, a third basic order of motion may be added: translation along the z or vertical axis (heave) [15]. The result of the above analysis indicates that the mechanical platform should provide two to three degrees of freedom to produce an immersive experience.

Figure 1. Reference axes for the analysis of boat motion.

Source: Author's own elaboration.

3.2. Weight Analysis of the Mechanical Platform

In the weight analysis of the elements that make up the simulator prototype, conducted to determine the capacity and type of actuators to be implemented, it was established that the mechanical platform would support a crew weight between 800 kg and 1,000 kg, depending on the number of people on board, their body weight, and protective equipment. The weight of weapons and ammunition ranges from 100 kg to 300 kg [10], depending on the type of weapon and the roles of each crew member within the boat's tactical configuration [10;12]. The estimated weight of the boat model itself is between 100 and 150 kg. Altogether, the static load would be approximately 900–1,100 kg. Additionally, the dynamic load must be considered; taking into account the type of motion, the expected acceleration should not exceed 5 m/s^2 . This corresponds to approximately 50% additional load [2]. Consequently, the initial analysis of mobile platform options focuses on a payload range of 1 to 2 tons. Lower payload capacities are also possible; however, they would limit the amount of equipment on board and the range of exercises that could be conducted in the simulator prototype, as weight would need to be reduced to match the load capacity.

3.3. Virtual Simulator

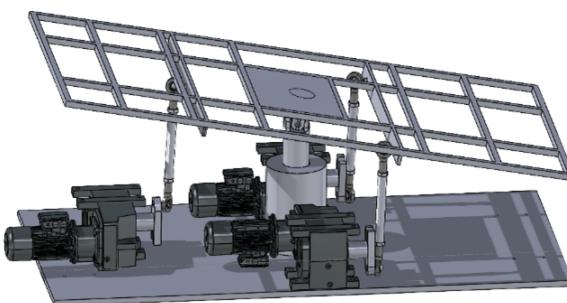
A comparison was conducted among available software solutions for the generation of virtual combat environments [4]. Although these platforms offer different options in mission creation and levels of realism, all require a computer capable of rendering and processing large-scale graphical data, as well as sufficient connectivity to interact with users through peripherals assigned to each role. Therefore, a design criterion is that the system must be equipped with a state-of-the-art processor and graphics card, as well as a

display with a refresh rate above 144 Hz, high resolution to achieve the required level of detail and clarity such as Full HD (1920×1080) and 4K Ultra HD (3840×2160) and a screen size greater than 32 inches.

The simulation software must generate the operational environment of the boat along the river and surrounding areas, interacting with the mechanical platform [18] and the gunner's role, while accounting for the pilot's possible maneuvers. It must generate target contacts and evaluation metrics to assess firing effectiveness. Gunner training requires a sensor system capable of tracking weapon position and shots fired, following the gunner's actions in real time in response to training exercises and enabling optimal performance evaluation [3].

3.4. Visualization System

The implementation of an immersive simulator prototype in military training aims to generate a sense of immersion [19] among the crew, reflecting their roles and spatial distribution from their respective viewpoints, as shown in Figure 2. In this project, particular emphasis is placed on the pilot's role in executing boat maneuvering operations and on the gunner's role in the detection and engagement of contacts. A semi-immersive category was selected, employing special display devices such as wall-sized screens [16].


Figure 2. Crew positions on the riverine combat boat [5].

4. Results

The project is currently in the execution phase; therefore, the final immersive riverine combat boat simulator prototype has not yet been completed. However, a set of designs, a scale prototype, and selected equipment can already be identified, which are expected to lead to a successful final product.

4.1. Mechanical Platform Blueprints

Based on the load and motion analyses conducted, it was determined that the mechanical platform would correspond to a three-degrees-of-freedom Stewart-type platform, capable of supporting a load between 1,000 kg and 2,000 kg. The platform would use three three-phase motors rated between 3 HP and 4 HP, each equipped with a brake and encoder, and controlled by variable frequency drives. Figure 3 shows the platform schematic, the distribution of the motors, and the mechanical joints that enable the movements required to provide an immersive experience for users in their different roles.

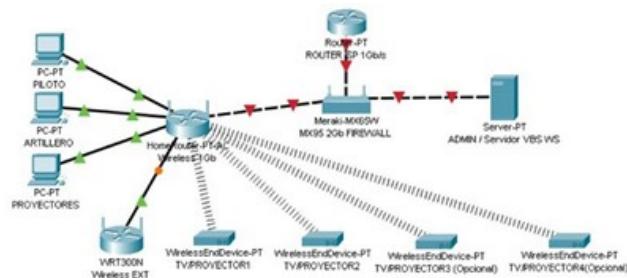
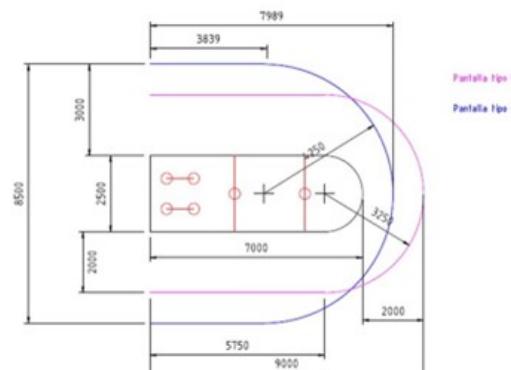


Figure 3. Mechanical platform diagram.

Source: Author's own elaboration.

4.2. Virtual Simulation Network Design

According to the hardware requirements defined by the selected virtual environment generation software, as well as the roles established by the nature of military doctrine training and naval schools, the network design shown in Figure 4 was determined. This design includes a server connected through a router to the systems assigned to the pilot and riverine gunner roles, as well as the projectors selected for visualization via Wi-Fi.


Figure 4. Virtual simulation network diagram.

Source: Author's own elaboration.

The equipment required for the server was selected with the following technical specifications: Intel Core i9-12900K processor, 64 GB DDR4 RAM, NVIDIA GeForce GTX 1080 GPU, and a 5 TB SSD. The client systems have similar specifications, except for graphics processing capacity, as they are equipped with an NVIDIA RTX 3080 GPU, since these systems handle video processing and include local storage of 1 TB SSD, as they only require storage of local information.

4.3. Visualization Design and Equipment

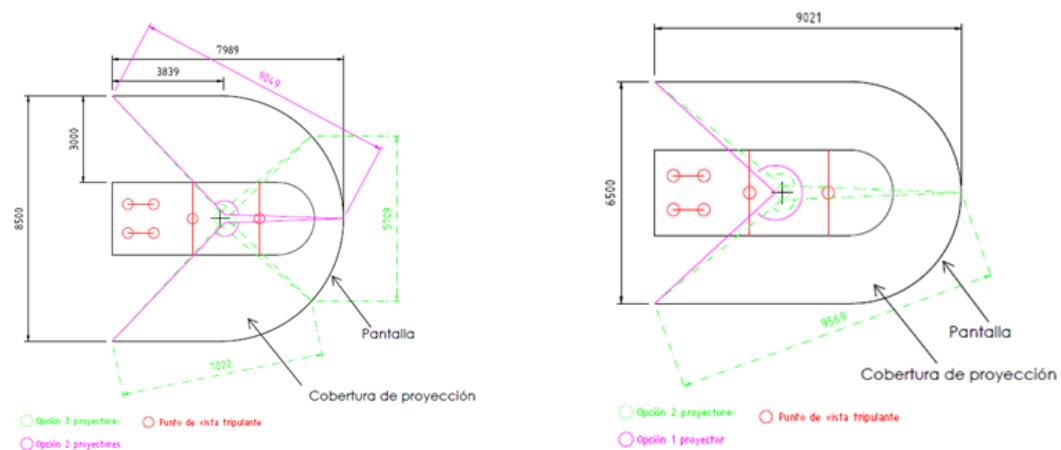

Plans were developed to define the location of the projection surface relative to the positions and viewpoints of the pilot and gunner, based on proper visualization requirements. Figure 5 shows the dimensions of two alternative screen configuration options. The semicircular or C-type configuration involves visualization from a single viewpoint, with a radial horizon. The split or U-type configuration is based on two or more viewpoints; in this case, the lateral viewpoints have their own visual fields that extend the forward (bow) view. The final determination of the visualization type is still under study.

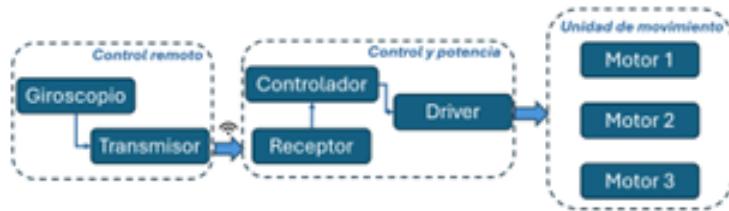
Figure 5. Visualization system layout.

Source: Author's own elaboration.

The type of screen determines the available projection equipment options and their quantity. Figure 6a shows the projection layout for a C-type screen, which may use two or three projectors, whereas Figure 6b represents the projection options for a U-type screen, with configurations using one or two projectors.

(a) Projection options for C-type screen.

(b) Projection options for U-type screens.


Figure 6. Projection configurations: a. Projection options for C-type screen. b. Projection options for U-type screens.

Source: Author's own elaboration.

4.4. Scale Prototype

The evolution of the project involves integrating the mechanical platform with a virtual simulation scenario through peripherals and electronic instrumentation elements in order to provide an immersive experience for the user. This level of complexity made it necessary to build a scale platform to facilitate the design of electronic instrumentation, as well as the development and evaluation of control algorithms for the platform and the configurations required for communication with the virtual simulator.

Figure 7 presents the functional diagram of the control system implemented in the scale prototype. Three main blocks can be distinguished: remote control, control and power, and the motion unit.

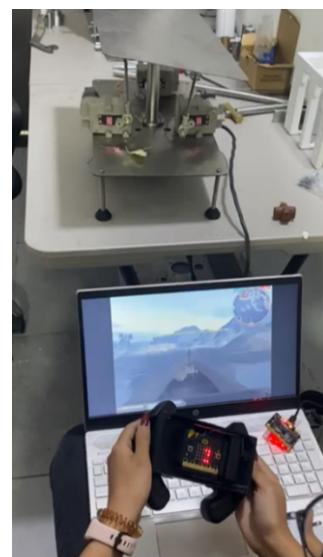


Figure 7. Motor control circuit.

Source: Author's own elaboration.

The remote control block integrates a gyroscope coupled to a transmitter module, which wirelessly sends orientation and acceleration information to the receiving system. This scheme allows the movements detected by the controller to be replicated on the scale platform, facilitating the validation of stability algorithms and dynamic response. In the control and power block, the receiver delivers the data to the controller, which is responsible for interpreting the signals and generating command instructions to the driver. The driver, in turn, supplies the power required to actuate the motors. The motion unit is composed of three electric motors that represent the main actuators of the system, reproducing the degrees of freedom required to simulate the movements of the combat boat.

Figure 8 shows the scale prototype of the mechanical platform, featuring three servomotors and mechanical connectors similar to those that would be used in the final prototype.

Figure 8. Functional scale prototype.

Source: Author's own elaboration.

For platform control, a circuit based on the micro:bit V1.5 development board was designed to control the motors, as shown in Figure 7, and to transmit orientation data from another board using an RF communication protocol.

The system was integrated with a computer to link the movements of the platform with those of the combat simulator, demonstrating successful results of the integrated system, as shown in Figure 8.

5. Conclusions

This paper presents the design and preliminary implementation of an immersive riverine combat boat simulator prototype aimed at improving training processes within the Colombian Navy. The proposed system integrates a mechanical motion platform, a virtual simulation environment, and a semi-immersive visualization system, offering a cost-effective and flexible alternative to traditional training methods.

The motion and load analyses support the selection of a Stewart-type platform with two to three degrees of freedom, capable of realistically reproducing the most relevant riverine dynamics. Additionally, the development of a scale prototype validated the control architecture and system integration, demonstrating the technical feasibility of the proposed solution and its potential for future full-scale implementation and doctrinal alignment.

Author Contributions: Luis Escoria: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Resources, Data curation, Writing – original draft, Writing – review & editing, Visualization, Project administration.

Aldo Lovo: Conceptualization, Methodology, Writing – review & editing, Supervision, Funding acquisition.

All authors have read and agreed to the published version of the manuscript. Please refer to the [CRediT taxonomy](#) for the definitions of the terms. Authorship is limited to individuals who have made substantial contributions to the reported work.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable, since the present study does not involve human personnel or animals.

Informed Consent Statement: This study is limited to the use of technological resources, so no human personnel or animals are involved.

References

1. Agudelo Arguello, V. M. (2024). Estado del arte del uso de los diferentes simuladores de navegación marítima existentes a nivel mundial para entrenamiento naval. Master's thesis, Escuela Naval de Cadetes "Almirante Padilla", Colombia.
2. Beer, F. P., Johnston, E. R., and Cornwell, P. J. (2010). *Mecánica vectorial para ingenieros*. McGraw-Hill, México.
3. Borisov Penchev, G. (2020). The use of constructive and virtual simulation technologies for skills training in military education. *Scientific Journal of the Military University of Land Forces*, 52(2):387–394.
4. Brookshire, J., Oskiper, T., Branzoi, V., Samarasakera, S., and Kumar, R. (2015). Military vehicle training with augmented reality. In *Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)*, Orlando, FL, USA.
5. COTECMAR (2007). Camuflaje en las fuerzas fluviales: origen del verde armas. In Zárate, F., editor, *Camuflaje en las Fuerzas Fluviales*, volume 1, pages 51–60. Cartagena, Colombia.
6. Fernandez Avila, R. J. and Larrarte Reina, J. P. (2022). Análisis de los costos-beneficios de la implementación de un sistema de simulación de bote de combate fluvial para los puestos de piloto y artillero de la browning m2 calibre .50. Master's thesis, Escuela Naval de Cadetes "Almirante Padilla", Colombia.
7. Galeon Cortes, M. A. and Fernandez Avila, R. J. (2021). Diseño conceptual de un objeto virtual de aprendizaje (ova) para la asignatura de operaciones fluviales. Master's thesis, Escuela Naval de Cadetes "Almirante Padilla", Colombia.
8. Gil Cabanzo, J. P. and Parra Pimineto, J. D. (2023). Estudio de la viabilidad para la implementación de un bote simulador de combate fluvial como alternativa para el entrenamiento de los infantes de marina en la armada de colombia. Master's thesis, Escuela Naval de Cadetes "Almirante Padilla", Colombia.
9. Gutierrez Hurtado, H. F. and Orrego Caro, E. E. (2023). Propuesta para el mejoramiento de los simuladores de tiro y de interdicción marítima de la escuela internacional de guardacostas. Master's thesis, Escuela Naval de Cadetes "Almirante Padilla", Colombia.
10. Hespas, M. (2012). M2 machine gun barrel wear with slap ammunition. *Materials and Manufacturing Processes*, 27(8):869–874.
11. Martinez Garcés, J., Figueroa, P., Garnica Lopez, M. A., and Gomez, V. (2022). Mob-vr: Caso desarrollo de un simulador para entrenamiento de personal de la armada de colombia usando metodologías ágiles. *Revista Ibérica de Sistemas e Tecnologias de Informação*, (55):363–378.
12. McNab, C. (2017). *The Minimi Light Machine Gun*. Osprey Publishing.
13. Orejaarena Quintanilla, D. S. and Perdomo Cardenas, I. L. (2023). Elaboración de una guía metodológica para la asignatura de pelotón de fusileros en el simulador virtual battlespace 2. Master's thesis, Escuela Naval de Cadetes "Almirante Padilla", Colombia.
14. Orlando (2016). Historia de la infantería de marina. Accessed: Feb. 12, 2016.
15. Santos Bulhões, J., Lopes Martins, C., Hansen, C., Rodrigues da Cunha Reis, M., da Silva Magalhães, A., Coimbra, A., and Pacheco Calixto, W. (2024). Platform and simulator with three degrees of freedom for testing quadcopters. *Robotics and Autonomous Systems*, 176.
16. Stedmon, A., Hasseldine, B., Rice, D., Young, M., Markham, S., Hancox, M., and Nobble, J. (2009). Motorcyclesim: An evaluation of rider interaction with an innovative motorcycle simulator. *Behaviour & Information Technology*.
17. Vargas Ayala, M. F. and Martin Moreno, J. S. (2023). Diseño conceptual de un ejercicio de tácticas en operaciones fluviales con elementos de combate fluvial en virtual battlespace. Master's thesis, Escuela Naval de Cadetes "Almirante Padilla", Colombia.
18. Yao, K. and Huang, S. (2021). Simulation technology and analysis of military simulation training. *Journal of Physics: Conference Series*.

19. Yem, V., Yagi, R., Unno, M., Miyashita, F., and Ikey, Y. (2020). Vibro-vestibular wheelchair with a curved pedestal presenting a vehicle riding sensation in a virtual environment. In *IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops*.
20. Yu, L. (2014). Reference incomplete in source.

Luis Escorcia Valera Electronics and Telecommunications Engineer.

Aldo Lovo Ayala Lieutenant Commander, Armada Nacional de Colombia.

Disclaimer/Editor's Note: Statements, opinions, and data contained in all publications are solely those of the individual authors and contributors and not of the OnBoard Knowledge Journal and/or the editor(s), disclaiming any responsibility for any injury to persons or property resulting from any ideas, methods, instructions, or products referred to in the content.