ESCUELA NAVAL DE CADETES
“ALMIRANTE PADILLA"
Honor ¢ Tradicidn

Article

Intelligent Management of Alternative Energy Sources through a
System based on Fuzzy Logic

Mejoramiento del proceso de planificacion en el desarrollo de
software mediante el método de puntos de caso de uso

Jose David Polo-Vanegas !

check for
updates

Citation: Polo, J.; Espitia, Y.; Salas, D.
Intelligent Management of Alternative
Energy Sources through a System
based on Fuzzy Logic. OnBoard
Knowledge Journal 2025, 1, 0.
https://doi.org/

Received: 17/02/2025
Accepted: 29/04/2025
Published: 21/05/2025

© 2025 by authors.
Licensed by Escuela Naval de
Cadetes "Almirante Padilla", COL.
This
distributed in the

Copyright:

article is freely accessible

terms and

conditions of Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /

40/).

, Yeinis Paola Espitia-Priolo !

1

and Daniel Jose Salas-Alvarez 1x

Department of Systems Engineering, Faculty of Engineering, University of Cérdoba, Monteria, 230002,
Colombia; jpolovanegas90@correo.unicordoba.edu.co; yespitiapriolo@correo.unicordoba.edu.co;
danielsalas@correo.unicordoba.edu.co

* Correspondence: danielsalas@correo.unicordoba.edu.co

Abstract: Planning is crucial for the success of software projects; however, it often faces problems
such as lack of time, experience, and understanding of requirements. These challenges can lead
to inaccurate estimates, delays, and products that do not meet customer expectations. This study
aims to analyze the implementation of the Use Case Points (UCP) method to support planning in
software development and make it more efficient. The research was carried out in several phases:
first, common problems in software planning were analyzed; then, based on these, the UCP method
was chosen and implemented in a solution supported by tools like Microsoft Excel. Finally, three case
studies were conducted to evaluate the effectiveness of the UCP method and compare it with agile
methodology, which allowed improvements in planning processes to be observed, in terms of time,
in software project development.

Keywords: Agile Methodology; Estimation; Software development planning; Software projects; Use
Case Point Method (UCPM)

Resumen: La planificacién es crucial para el éxito de proyectos software; sin embargo, suele
enfrentar problemas como la falta de tiempo, experiencia y comprensién de los requisitos. Estos
desafios pueden provocar estimaciones inexactas, retrasos y productos que no cumplen con las
expectativas del cliente. Este estudio tiene como propésito analizar la implementacién del método de
puntos de casos de uso (MPCU) para apoyar la planificacién en el desarrollo de software y hacerla
mas eficiente. La investigacion se desarroll6 en varias fases: primero, se analizaron los problemas
comunes en la planificacién de software; luego, con base en estos, se eligié el MPCU implementandolo
en una solucién apoyada en herramientas como Microsoft Excel, finalmente, se implementaron tres
casos de estudio para evaluar la efectividad del MPCU, y compararlo con la metodologia 4gil, lo que
permitié observar mejoras en los procesos de planificacion en términos de tiempo, en el desarrollo de

proyectos software.

Palabras clave: Estimacién; Método de puntos de casos de uso (MPCU); Metodologia Agil; Planifi-
cacion del desarrollo de software; Proyectos de software

OnBoard Knowledge Journal 2025, 1, 0. https://doi.org/10.3390/OBK1010000

https:/ /revistasescuelanaval.com/obk/

https://doi.org/10.3390/OBK1010000
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.escuelanaval.edu.co/
https://revistasescuelanaval.com/obk/
https://orcid.org/0009-0002-4748-2492
https://orcid.org/0009-0003-8853-1091
https://orcid.org/0000-0002-7097-7883
https://doi.org/10.3390/OBK1010000
https://revistasescuelanaval.com/obk/

OnBoard Knowledge Journal 2025, 1, 0

20f13

1. Introduction

The software development process is essential for technological advancement and
is closely linked to software engineering, which encompasses the structures, tools, and
methods employed in the creation of computer programs. This process includes situation
analysis, project drafting, software development, and the necessary testing to ensure proper
functionality before implementation. In this context, planning plays a crucial role, as the
success of the developed software depends on it. According to Alboka Soft, the benefits
of good planning include: realistic monitoring of each phase, reduction of unnecessary
work and costs, evaluation of the impact of changes, obtaining software development
and testing, stabilization of requirements, and absolute project traceability. Additionally,
proper planning grants independence to developers and ensures that the final objective
adds maximum value to the project by organizing and documenting each step [1].

Being competitive is a characteristic that companies require today, and therefore they
must exercise greater control, making this goal increasingly difficult to achieve. Clients
demand precise estimates and budgets related to software development projects in very
short timeframes, indicating that incorrect responses and estimates lead to project failure
and financial losses for companies. Therefore, it is important to clarify that preliminary
project planning and clarification of planned objectives is a necessary task for commercial
success and the reasonable achievement of established goals. Conversely, neglecting this
increases the potential for error and raises the level of failure and conflict [12].

For a project to achieve its goal, it must consider all possible scenarios by consulting
client needs. Hence, failing to cover all these possibilities can lead to project failure. Thus,
by improving the project planning capacity, an optimal result would be obtained, reflected
not only in the company’s profits but also in customer satisfaction. For this reason, it is
necessary for companies to have a good pre-production plan for projects.

A question included in the survey conducted by Coding Sans: "What is the number
one cause of delays in your teams?", was asked to over 500 software developers worldwide
as part of their annual report "The State of Software Development 2021." According to the
report, the main cause of delivery problems in software development teams was the lack of
effective planning, identified by most respondents as the primary issue. This indicates that
planning is a crucial element for the successful delivery of software projects, and teams
must ensure proper planning from the beginning of the project.

In particular, the report highlighted the main factors contributing to poor planning as:
lack of time, lack of experience, and lack of understanding of project requirements. The
lack of time for planning is a common problem in many software projects, especially when
teams face tight deadlines. Teams often feel pressured to start development quickly, which
may lead them to skip the planning phase or perform rushed and superficial planning. This
can cause a lack of understanding of project requirements and increase errors and delivery
delays.

Lack of experience in planning is also a challenge for some teams. Those without
experience may not know how to properly approach planning and struggle to identify key
requirements and tasks necessary to achieve project goals. Finally, a lack of understanding
of project requirements is another key factor contributing to poor planning. If teams do
not fully comprehend the project requirements or lack a clear vision of the scope, they may
plan inadequately and underestimate the time and resources needed [2].

Therefore, it is crucial for software development teams to dedicate the necessary time
and effort to pre-production to ensure project success. Proper planning helps identify and
address potential problems and risks before they become serious, which can save time and
resources in the future.

This study’s main objective is to analyze the use of use case point methods in develop-
ment and the agile approach to verify their efficiency and understand the strengths and
weaknesses of both approaches.

The structure of this article is organized as follows: Section 1 introduces 1 the impor-
tance of effective planning in software development and identifies common challenges.

OnBoard Knowledge Journal 2025, 1, 0

30f13

Section 2 details the main contributions of this study, highlighting the implementation of
the Use Case Point method, its integration with agile methodologies, and the validation
through case studies. Section 3 reviews related work and existing methodologies for project
estimation and management. Section 4 describes the methodology applied. Section 5
presents the results and comparative analysis from the conducted case studies. Finally,
Section 6 summarizes the conclusions and discusses future directions.

2. Contributions

This section summarizes the key contributions of the study aimed at enhancing the
software development planning process. By addressing common challenges in estimation
and project management, the research proposes an integrated methodology combining
the Use Case Point Method with agile practices. The following points highlight the main
advancements and practical outcomes achieved through this work.

1. This study identifies and explores the primary challenges affecting software devel-
opment planning, such as lack of time, insufficient experience, and limited under-
standing of requirements—factors that often lead to inaccurate estimates and project
delays.

2. Asolution based on the UCP methodology supported by tools like Microsoft Excel
was developed to facilitate effort estimation in man-hours for software projects. This
implementation incorporates technical and environmental factors to enhance planning
accuracy.

3. A comparative analysis between UCP and the Agile Scrum methodology was con-
ducted, highlighting the strengths and weaknesses of each approach. Furthermore, a
hybrid approach is proposed to leverage UCP’s initial estimation accuracy alongside
Agile’s flexibility during project execution.

4. The proposed solution was evaluated using three case studies (one fictitious and two
real), demonstrating improvements in effort estimation and time management in
software development projects, thereby evidencing the effectiveness and applicability
of the hybrid approach in different contexts.

3. Related Works

The planning process in software development is a relevant activity because good
project planning is crucial for its success, contributing to effective team management and
significantly improving product quality [5]. To improve the software planning process, it
is first necessary to understand what is being done and how it is being done, since many
software projects fail due to poor requirements management and unrealistic deadlines
[4]. Another cause is the lack of rigorous and detailed estimation, which allows clarity
regarding the activities to be performed both in pre- and post-production, as well as their
possible changes, leaving a sufficiently clear margin for potential errors. This often results
in uncertainty during development about what to do in certain situations or how to handle
changing requirements [11].

Based on the above, a question arises: what methods do developers use to mitigate
these problems? A common technique used by developers for software estimation is
the use of work breakdown structures (WBS), which involve dividing the project into
smaller, manageable tasks, facilitating the estimation of the time and resources needed to
complete each task. Another widely used technique is function points, which measure the
functional size of the software that is, how many functions the software performs and how
complex they are. From this measurement, the effort required to develop the software can
be estimated. Following this path, there is no single method that guarantees success in all
cases, but many researchers agree that the agile model is the best for software development
projects due to its flexibility in responding to changes and new requirements [10].

The Agile method is so popular that Ortiz Alvarez presented a tool for managing
activities in software projects using an agile methodology based on Scrum, which involves
weekly follow-up meetings and delivery cycles of activities. The tool allows the creation of

OnBoard Knowledge Journal 2025, 1, 0

40f13

a client space where tasks can be recorded and edited to ensure direct communication with
the development team [16].

However, the agile approach has several disadvantages, including the lack of a detailed
plan, which can make it difficult to estimate the time and resources needed to complete
the project. This is a risk when considering the function point technique, where if not
applied correctly, resulting estimates may be inaccurate or incomplete. For example, if all
the software functions are not identified or their complexity is underestimated, the estimate
may be too low, leading to problems such as delivery delays or cost overruns. Therefore,
it is important to correctly apply this technique and ensure that all relevant functions are
properly identified and evaluated [11].

In a review of software project case studies, Ibraigheeth Mohammad and Fadzli Syed
Abdullah identified common factors contributing to software project success: successful
software projects have realistic and stable objectives, a team with adequate knowledge and
experience, efficient technology, user involvement, and efficient management. Additionally,
they note that project failures can be useful for identifying key factors for project success.
They assert that no single factor guarantees project success; rather, it is a combination of
several factors that contribute to success. Understanding these key success factors can
help project managers make informed decisions about resource allocation and project
management [6].

Project success is measured by the ability to complete it according to desired specifi-
cations, within the specified budget and promised schedule, while keeping the client and
stakeholders satisfied. For correct project completion, both planning and execution must
be properly implemented.

Furthermore, software defect prediction is one of the most active research areas in
software engineering and plays an important role in software quality assurance. The
increasing complexity and reliance on software have raised the difficulty of delivering
high-quality, low-cost, and maintainable software, as well as the likelihood of creating
software defects. Software defects often cause incorrect or unexpected results and behaviors
in undesirable ways. Defect prediction is a crucial and essential activity. Using defect
predictors can reduce costs and improve software quality by identifying modules (instances)
prone to defects before testing, enabling software engineers to effectively optimize the
allocation of limited resources for testing and maintenance [7].

In addition to recent advances in software defect prediction, ensemble learning ap-
proaches have been explored. These approaches combine multiple classification techniques
to improve prediction performance. This research provides a systematic review of the use of
ensemble learning for software defect prediction, identifying the most employed methods
and their performance metrics. Results show that ensemble approaches, such as random
forests and boosting, offer better classification accuracy compared to individual classifiers.
Furthermore, the importance of feature selection and data sampling as preprocessing steps
to improve ensemble classifiers is highlighted [8].

4. Methodology

This study focused on conducting a comprehensive and detailed analysis of case
studies and reports collected from software development companies that have employed
the Use Case Point (UCP) method. The UCP method, which serves as a systematic approach
to estimating the effort and resources required in software projects, was critically examined
to gain a deeper understanding of its practical application. Particular attention was given
to identifying common challenges, potential sources of error, and limitations that may arise
during its implementation, such as estimator subjectivity and variability in assessing use
case complexity and environmental factors.

In parallel, the study performed a comparative evaluation between the UCP method
and the agile approach, a widely adopted and flexible methodology known for its iterative
planning and adaptability to change throughout the software development lifecycle. This
comparative analysis explored the strengths and weaknesses of both methods in the con-

OnBoard Knowledge Journal 2025, 1, 0

50f13

text of project planning accuracy, flexibility, effort estimation, and risk management. By
analyzing these aspects, the research sought to provide a more nuanced and comprehen-
sive perspective on how software development planning processes could be optimized by
leveraging the complementary benefits of both approaches.

Based on the insights gained from this analysis, a novel solution was proposed and
developed that integrates the Use Case Point method within an agile framework, aiming
to address the identified problems in traditional software planning practices. This hybrid
approach was designed to offer a solid initial estimation grounded in UCP’s structured
assessment while maintaining the iterative flexibility and responsiveness characteristic of
agile methodologies.

To evaluate the practicality and effectiveness of this integrated solution, three case
studies were conducted: one fictitious project designed to test the approach in a controlled
scenario, and two real-world projects undertaken by students in a systems engineering
program. These case studies provided empirical data to assess the solution’s applicability
across different contexts, allowing for comparison of estimated effort, time management,
and overall planning improvements. The outcomes from these studies served as a founda-
tion for validating the proposed methodology and identifying areas for further refinement.

5. Results
Comparative analysis of MPCU and Agile method

The Use Case Points estimation method proposed by Karner is used as a basis to
calculate the effort required for software implementation. This method allows an early
estimation based on a certain knowledge of the requirements to be developed, which is of
interest to companies engaged in software construction. The effort estimation, measured in
man-hours (MH), required for the development of a specific software product is performed
based on the number and complexity of use cases identified in the project. However, the
effort estimation for the implementation process of information systems using this method
shows a significant deviation from the actual estimated effort. One influencing factor in this
deviation may be the lack of experience and subjectivity of the estimator when assigning
values to technical and environmental factors, as well as when classifying the complexity
levels of use cases and actors [15].

The agile methodology Scrum, one of the most widely used, is characterized by its
flexibility and adaptability to changes and new requirements that may arise during the
development process. Instead of following a rigid plan, the agile model focuses on the
continuous delivery of small parts of the project, called iterations or sprints, which improve
over time. However, agile has several disadvantages, such as the difficulty of estimating
the time and resources necessary to complete the project due to the lack of a detailed plan
(Table 1).

OnBoard Knowledge Journal 2025, 1, 0

6 of 13

Table 1. Comparative table of the MPCU and the Agile Method (Scrum).

Aspect

Use Case Points (UCP)

Agile Methodology

Estimation Basis

Initial Accuracy

Effort Calculation

Adaptation to Changes

Estimation Deviation

Prerequisites

Flexibility in Estimation

Impact of Complexity

Based on the number and com-
plexity of identified use cases.

High accuracy in initial estima-
tion if requirements are well-
defined.

Effort is calculated in man-
hours, considering technical
and functional complexity.

Requires major revisions and
adjustments if requirements
change.

Higher risk of deviation if use
cases are not correctly identi-
fied or complexity is underes-
timated.

Requires clear and detailed
knowledge of requirements
from the beginning.

Low flexibility, since estima-
tion is done at the start and de-
pends on requirement stability.
Use case complexity directly
affects the estimate, potentially
causing deviations if not mea-
sured properly.

Estimated based on iterations
(sprints) and smaller scope
tasks.

Lower initial accuracy due to
the iterative and flexible na-
ture of the process.

Effort is continuously adjusted
each sprint, without a detailed
global estimate at the start.
Changes are easily incorpo-
rated in the next sprint with-
out greatly affecting the over-
all estimate.

Lower risk of deviation, as es-
timation is continuously ad-
justed based on actual project
progress.

Does not require complete
knowledge of requirements, as
they may change during the
project.

High flexibility, as estimation
adapts in each sprint accord-
ing to new needs or changes.
Complexity is managed it-
eratively, adjusting the esti-
mate each sprint based on the
team’s capabilities.

Implementation of the MPCU using the tool
Based on the research, a solution was developed to apply the Use Case Point Method

(UCP) within the Scrum-based methodology: we took the UCP implementation from an
Excel spreadsheet presented by Scott Sehlhorst in a Tyner Blain article [14], translated it
into Spanish, and applied recommendation tables to facilitate its use along with a simple
spreadsheet to organize scrums, enabling its combination with the agile methodology
(Figure 1).

Technical Environmental Use Case | Actor = Scrum

Final Calculations

Figure 1. Spreadsheet tabs. Source: “Final Calculations” Excel spreadsheet.

The spreadsheet originally contained five tabs for processing and collecting the data
necessary to estimate effort using the Use Case Point Method (UCP). Later, we added a tab
called "Scrum" to facilitate comparison with the agile methodology.

To calculate Use Case Points (UCP), the first step is to determine a numerical represen-
tation of the technical factors of the software, known as the Technical Complexity Factor
(TCF), which covers non-functional aspects of the system such as performance, security,
and the use of reusable components. The second step is to create a number representing
the environmental factors that influence the team’s ability to perform the work, called the
Environmental Factor (EF), which includes characteristics of the implementation team and
the process, such as team experience and requirements stability.

The third step is to measure the use cases and create a representation of the quantity
and complexity of the use cases that the software must support, called Unadjusted Use
Case Points (UUCP), classifying use cases as simple, average, or complex.

OnBoard Knowledge Journal 2025, 1, 0

70f13

In the fourth step, the software users—both people and other systems—are analyzed,
and actors are classified as simple, average, or complex (Actor Weight, AW).

Finally, the formula to calculate Use Case Points is described in terms of variables such
as TCF, EF, UUCP, and AW [13].

In the UCP cell (see Figure 2), equation 1 is used to calculate the Use Case Points.
These points are then multiplied by the “Ratio,” which represents the effort hours per use
case point, to obtain the effort hours for the project’s use cases. This translates into the
estimated programming hours for those use cases.

For the total project calculation, we recommend that programming time be 40% of the
total development time, based on the work of Suresh Nageswaran [9]. For the remaining
development activities, the percentage of total time allocated to each can be chosen freely.
As shown in the spreadsheet (see Figure 2), these recommendations are based on the work
of Lianny O’Farrill Fernandez [3].

UCP = (UUCP + AW) x TCF x EF)

Figures 2 to 7 show the spreadsheets corresponding to each factor.

Cdlculos de ofras pestafias
TCF Factor de complejidad técnica

0.6
EF Factor medicambiental 1.4
UUCP Puntos de casos de uso no ajustados 0
Ponderacion del actor

Calculo de puntos de casos de uso

Puntos de casos de uso

Recomendaciones Descripcion
Calculo del esfuerzo esfimado

Horas de esfuerzo Se considera la magnitud de los factores

por punta de caso medioambientales para estimar las horas
20
de uso de esfuerzo por puntos de caso de uso
Ratio| Horas de esfuerzo por punto de caso de uso 20 recomendadas recomendadas
Personas Namero de personas por caso de uso 5 Actividad
Andlisis _ |Se recomienda estimar un 10% de las
Hora/Persona Horas de esfuerzo por persona horas de esfuerzo al andlisis
Dissiia | 8e recomienda estimar un 20% de Ias

horas de esfuerzo al disefio

. Se recomienda estimar un 40% de las
Programacién - g
Horas de esfuerzo horas de esfuerzo a la programacicn

Se recomienda estimar un 15% de las

Pruebas -
horas de esfuerzo a las pruebas

Para obtener orientacion adicional con esta pagina, consulte los Sobrecarga Se recomienda estimar un 15% de las
siauientes articulos en Tvner Blain ¢ horas de esfuerzo ala sobrecarga
Software Cost With Use Case Points - Horas totales del proyecto
Software Cost Estimation With Use Case Points - Final C
Software Cost Estimation With Use Case Points - Free Excel
Pasos para calcular los puntos de los casos de uso

0 Para todas las pestafias, ingrese valores solo en las celdas resaltadas

1 Ingrese los factores de técnica en la pestafia Técnica

2 Ingrese factores en la pestafia Medio ambiente

3 Identificar casos de uso en Ia pestafia Caso de uso

4 Identificar actores en la pestafia Actor

ACRCICTELENY | Technical | Environmental | UseCase | Actor | Scrum 4

Figure 2. Final calculations spreadsheet. Source: “Final Calculations” Excel spreadsheet.

OnBoard Knowledge Journal 2025, 1, 0

8 of 13

Final Calculations

Se requiere La arquiteetura de 11 solucion pusde ser eentralizads o de un solo
f iotoma B inquiling, o pueds ser distribuida [eomo una solucin dz n niveles) Factor ielevsnte: 022
tem: o multinquiling. Los nimeros més alios representan una
tribuido arquitectura méas compleja.
Lz rapidez de respuesta de (05 LUNos € Un Factor mportants (1
El tiempo de no tr\;\a\]. Por e\err;plo‘ size espera _ql:leIIaLcarg:a del szrvider e
muy baja, esto puede ser un factar trivial. Los ndmeros mas altos .
2 respuesta es ! lsp?&ss‘ntan P importancia cada vez mayor del tiempo de Factorimponante: 34 4
importante tespuesta [un motor de biisqueda tendrfa un nimero alto, un
aqreqador de noticias diario tendifa un nfmero bajol
158 esta desarrollando [aplicacion paia optimizar la eiciencia
5 | Eficiencia del | del usuario 0 simplemente ls capacidad? Los nimeros més altos Eactor ssnelalh
usuario final representan proyectos que dependen mis de la aplicacidn para :
mejorarla eficiencia del usuario.
5E un 3Hay mucha tabaje algoritmice diel que hacer y probar? Los
, |Pprocesamiento | algoritmeas semplejos (nivelacién de recursos, andlisis de
interno sistemas en ¢l dominio del tiempo, cubos OLAF] tienen ndmeros
Lai mas alkos. Las consultas simples a bases de datos tendran
iLa reutlizacion de codigo pes2do &3 un Objetivo o una meta? La
El cédige reutilizasién de ¢Sdigo reduce Is cantidad de esfuerzs necesaric
rewilizable paraimplementar un progects, También reduce Is cantidad de
5 1 tiempo necesario para depurar un proyecto. Una funcisn de
debe ser un biblioteca compartida se puede reutilizar varias veces y coregir el
toco eddige en un solo lugar puede rescluer Uarios srores. Cuanto
maor sea el nivel de reutiizacidn, menor serd el nimerg,
Facilidad de {E lafaniidad de instalacicin paralos ususrios finales un Fastar
3 - - [clave? Cuanto mayor sea el nivel de competencia de los usuarios,
instalacidn menar serd el ndmera.
3E [aFaclidad de s Un oritenis principal de aceptacion? Cuania
v Usabilidad 05 Mayar es | importancia de la usabilidad, mayar es el nimero.
Soporte 5% requiete sopoite mulliplatatorma? Cuantas mas plataformas
2 - 2 deban ser compatibles [pusden ser versiones de navegadares.
multiplataforma dispositivos maviles, ete. o Windows/OS LN, mayor ser el
Facil de JEl cliente requiers |a eapacidad de cambiar o personalizar la
3 1 aplicacién en'el futuro? Cuantos més cambiostpersanalizaciones
cambiar s requieran n el FUNITS, Mayar serd el valor,
Altamente Tendra que sbordar elbloquec ds 13 base de datos y oiros
] 1 problemas de concurrencia? Cuanta mas stencidn deba dedicar 3
concurrente resolver canflictos en los datos o la aplicacién, mayor serd el
5% pueden apiovechar la solusiones de sequridad enistentes o
W Custom | se debe desarallar un 66digo personalizado? Cuanto més trabajol
Security de seguridad personalizado tenga que realizar [nivel de campa.
nivel de paging o seguridad basads en roles. por ejsmplo). mayor
3L aplicacien requerir el Uzo de controles o bibliotecas de
Dependencia tercerns? Aligual que el codigo reutilizable, ol codigo de tercerns
12| del cédigo de 1 puede reducir el esfuerzo necesario para implementar una
terceros solucidn. Cuanto més codign de terceros [y mds confiable sea el
eddigo de terceros), menor serd el ndmerg,
jCuinta formacion de usuario se requiere? jLa aphcacion &5
™ Entrenamiento 1 complejs 0 soporta actividades complejas? Cuanto mis tarden
de usua 105 usuarios en cruzar e umbral de succidn (alcanzar un nivel de
dominio del producto), mayor serd el valar,

pagina.
Tyner Blain

ftware Cost Estimation With [lse Casze Points - Free Fyeel

Environmental Use Case Actor

Scrum

Hagnitud
Faclor medioambiental Multipli Recomendacién
Cud El
lograr, ' un
1 Familiaridad con 15 & Javs, s ustedle Factor no presente: 022
el proyecto :
seguics, L 5= alos o
E a T i &n7 Esta sélo
xperiencia de " &
2 :p"cmbn 0s alrealzar : Loz Factor algo presence: 334
s i
Experiencia en Cuwdnta enpetiencia tisne s auipo en D07 Pusde 2 Fdel chidar
rogramacion da & obi 1
3 po,?e,“adﬂ a 1 doenel P b Un prosects Factortotalmente presente: S
objetos O0enl Les nimeros
u]u]
requisitos? L
. Capacidad de s e de
analista lider T P
5 Motivation 1 E 2
L
R " trabsio. La forma de evitarlo e planificar el cambio e instituir un
equisitos v (adh
& 2 N JesCripciol
estables s gente no hace estay serd insvitable realizar slgunas Descripeidn
=l cambio].
L. jan a
7 Personal a tiempo A 3 Conteo
parcial o
2 ® St
Lenguaje de Jtos. © 15 dificuhad | esfuerza
& | programacion -1 del o it il
dificil de Forman. Piérselo enté 4
e dificulad o

Final Calculations

Technical ||

Para obtener orientacion adicional con esta pagina,
consulte los siguientes articulos en Tyner Blain

froare C o 't L
froare C ion ith Uz i i actar
i are C ior it Use Caze Poirys - Free Encel

Spieadshest

bl | Use Case | Actor | Scrum

Figure 4. Environmental factors spreadsheet. Source: "Environmental” Excel spreadsheet.

OnBoard Knowledge Journal 2025, 1, 0

90of 13

Puntos de casos de uso no Numero de casos - n
- N Multiplicador - Descripcién
ajustados de uso
1 Simple 5 0 Caso de uso simple: hasta 3 transacciones
2 Promedio 10 0 Caso de uso promedio: de 4 a 7 transacciones
3 Complejo 15 0 Caso de uso complejo: mas de 7 transacciones.
UUCP Calculada 0

Casos de uso individuales Multiplicador Nombre del caso de uso
1 Simple 5
2 | Promedio | 10 | |

Inserte filas adicionales encima de esta fila y copie los valores de las celdas para actualizar automaticamente los recuentos de actores por tipo.

Para obtener orientacion adicional con esta pagina, consulte los siguientes
articulos en Tyner Blain

Software Cost With Use Case Points -

Software Cost With Use Case Points - Use Case Analysis

How to Write Good Use Case Names - 7 Tips
Software Cost With Use Case Points - Free Fxcel

p Final Calculations | Technical | Environmental |([Ckieesd| Actor | Scrum 4

Figure 5. Use case spreadsheet. Source: "Use Case" Excel spreadsheet.

Numero de

Tipo de Actor Muttiplicador Actoes

Descripcion
Los actores simples son otros sistemas que se comunican con su software a través de una API
predefinida Una API podria exponerse a través de una DLL, 0 como REST, SOAP o cualquier API
de senicio web o llamada a procedimiento remoto (RPC). El elemento clave es que esta
exponiendo la interaccion con su software a través de un mecanismo especifica y bien definido.

1 Simple 1 0

Los actores promedio pueden ser seres humanos que interactdan en un protocolo bien defimido o
pueden ser sistemas que Gan a través de una APl mas compleja o flexible.
La definicion original de actores complsjos especifica que los usuarios que interactian con el

2 Promedio 2 0

software a través de una interfaz grafica de usuario son actores complejos. Si bien esto es cierto,
Ia misma clasificacién deberia aplicarse a los usuarios que interactdan con el sistema de manera
impredecible. Una interfaz AJAX que exponga mas aplicaciones subyacentes (y almacenes de
datos) que las que estarian disponibles a través de un protocolo rigido podria introducir una

complgjidad similar
Calculated AW)

3 Complejo 3 0

Actores individuales Multiplicador Nombre del actor
1 Simple 1

2 1 Promedio | 2 | |
3 Complejo 3

Inserte filas adicionales encima de esta fila y copie los valores de las celdas para actualizar automaticamente los recuentos de actores por fipo

Para obtener orientacion adicional con esta pagina, consulte los
siguientes articulos en Tyner Blain

Software Cost With Use Case Points -

Software Cost With Use Case Points - Actor Analysis

Software Cost Estimation With Use Case Points - Free Excel
Final Calculations Technical Environmental Use Case Actor Scrum +

Figure 6. Actor spreadsheet. Source: "Actor" Excel spreadsheet.

Figure 7. Scrum organization spreadsheet. Source: "Scrum" Excel spreadsheet.

With the changes and additions made in this implementation of the Use Case Point
Method (UCP), it was possible to compare the initial estimations obtained by both method-
ologies, with the UCP providing estimates that were more distant than those made by
developers using Scrum.

Implemented case studies

Three tests of the solution were conducted as follows:

Case 1: Geek Web — Communication and socialization platform for communities
(not executed). Geek Web is a communication platform designed to connect people with
shared interests, allowing them to share knowledge, experiences, and hobbies. The idea
arises from the need to create a space where enthusiasts of specific topics can find and inter-
act with others who share their interests. Its objectives are to create a secure and accessible
communication platform for interest-based communities and to facilitate connection and
knowledge exchange among like-minded individuals (Table 2).

For the case studies, students of Systems Engineering at the University of Cérdoba,
who were working on their respective projects, were asked to complete the technical

OnBoard Knowledge Journal 2025, 1,0 10 0f 13

Table 2. MPCU results for Geek Web.

Factor Weight
TCF 1.195
EF 0.815
uucre 105
AW 8
UCP 110.1
Ratio 28

Effort Hours 3081

complexity, environmental factors, actors, and use cases for the estimation of Use Case
Points (UCP) and consequently fill in the "Scrum" tab, emphasizing the estimates they
considered.

Case 2: Medical Appointment Scheduling at Camus (Testing Phase). At Camus, the
medical appointment scheduling system combines in-person service by quota and phone
calls, resulting in long queues of users waiting to be attended. The manual scheduling
process can take up to 25 minutes. Since many of the people who come to schedule
appointments are from remote villages or distant places, quotas are limited, and therefore,
not everyone is attended to on the same day. This causes people to have to queue again
to reserve a spot. The objectives are to implement an efficient and accessible medical
appointment scheduling system, reduce waiting times and queues, increase the user service
capacity, and improve user experience (Table 3).

Table 3. MPCU results for Scheduling Medical Appointments at the Campuses.

Factor Weight
TCF 1.015
EF 0.74
uucre 25
AW 2
UCP 20.3
Ratio 28
Effort Hours 568

Case 3: University Wheels (Testing Phase). In the city of Monteria, located in the
department of Cérdoba, mobility is a fundamental aspect for the development of its
inhabitants, particularly for university students. The university transportation system
plays a crucial role in seeking an efficient and reliable solution to facilitate mobility within
the city and ensure that students can access their educational institutions in a timely and
safe manner. Its objectives are to improve the safety of students and the community, offer
an efficient and accessible transportation service, and facilitate the movement of students to
their educational institutions and the community to their destinations of interest (Table 4).

Table 5 presents a comparison of effort estimations, measured in hours, obtained
through the Use Case Point Method (UCP) and the Scrum methodology for three different
projects. This comparison highlights differences in estimation approaches and provides
insight into how each method evaluates the time required for software development.

OnBoard Knowledge Journal 2025, 1,0 110f13

Table 4. MPCU results for University Rounds.

Factor Weight
TCF 1.09
EF 0.77
UuCP 50
AW 6
ucp 47
Ratio 20
Effort Hours 940
Table 5. MPCU vs SCRUM results.
Project MPCU (Hours) Scrum (Hours) Remarks
The estimated time is lower
in Scrum than in UCP. Here,
Geek Web 3081.4987 2066 ONLY Programming time is
' estimated, not the entire
project (analysis, design, pro-
gramming, testing, etc.).
Med1ca1. Appointment 567.8316 140
Scheduling
Total project time is esti-
University Wheels 1504.0256 1239 Mated. UCP estimation re-

mains less "optimistic" than
Scrum.

6. Conclusions

The primary focus of this study was to conduct an appreciative observation of the
current state of software planning by using the agile methodology as a benchmark and
thoroughly exploring the strengths and limitations of the Use Case Point (UCP) Method.
To facilitate the implementation and evaluation of the proposed hybrid solution, the
widely accessible accounting tool Microsoft Excel was employed, enabling a practical and
replicable estimation process. The case studies revealed a notable divergence between
the effort estimates generated by the UCP method and the initially more “optimistic”
projections derived from the Scrum methodology, highlighting differences in estimation
philosophies and potential biases.

These findings underscore the value of integrating the structured and systematic
nature of UCP with the adaptive and iterative characteristics of agile methods. It is an-
ticipated that this combination can provide a robust and reliable initial estimate while
simultaneously maintaining the flexibility necessary to accommodate evolving require-
ments and unforeseen changes during the software development lifecycle. Following the
establishment of a solid baseline estimate, project teams are positioned to leverage agile
principles for ongoing project execution and refinement.

Nevertheless, the study emphasizes the importance of managing requirement changes
carefully, as excessive modifications during development can undermine the accuracy of
the preliminary estimate and necessitate continuous re-planning and adjustment for both
methodologies. Future research is recommended to evaluate the scalability and adaptabil-
ity of this integrated approach in more complex and larger-scale software development
environments, thereby further validating its applicability and identifying opportunities for
enhancement.

OnBoard Knowledge Journal 2025, 1,0 120f13

Author Contributions: Jose Polo: Conceptualization, Methodology, Software, Visualization, Valida-
tion, Formal analysis.

Yeinis Espitia: Investigation, Resources, Data curation, Writing — original draft.

Daniel Salas: Writing — review & editing, Supervision, Project administration, Funding acquisition.
All authors have read and agreed to the published version of the manuscript. Please refer to the
CRediT taxonomy for the definitions of the terms. Authorship is limited to those who have made
substantial contributions to the reported work.

Funding: This study did not receive external funding.

Institutional Review Board Statement: Not applicable, since the present study does not involve
human personnel or animals.

Informed Consent Statement: This study is limited to the use of technological resources, so no
human personnel or animals are involved.

Conflicts of Interest: Under the authorship of this research, it is declared that there is no conflict of
interest with the present research.

References

1.

a1

O 00 N O

Alboka Soft (2023). Planificar en un proyecto de software. https:/ /www.albokasoft.com/index.php/blog/80-proyecto-de-software-
a-medida. Accessed: Apr. 24, 2023.

. Coding Sans (2021). The state of software development 2021.
. Fernandez, L. O. (2010). Estimacién de tiempo y esfuerzo en proyectos de software. Technical report, Universidad Central Marta

Abreu de las Villas.

. Garzoén, E. (2019). Elaboracién de un modelo para la implementacién de controles eficaces para la gestién de riesgos en proyectos

de software bajo el marco de estandares internacionales en empresas fabricas de software en bogota. Technical report, Universidad
Militar Nueva Granada.

. Ibeto, O. E., Gbadegesin, M., Fakunle, I., and Wunmi, A. S. (2022). Software project planning, people management, and effects on

product quality. American Journal of Computer Science and Information Technology, pages 2-9.

. Ibraigheeth, M. and Fadzli, S. A. (2019). Core factors for software projects success.

. Li, Z,, Jing, X. Y., and Zhu, X. (2018). Progress on approaches to software defect prediction.

. Matloob, F. et al. (2021). Software defect prediction using ensemble learning: A systematic literature review.
. Nageswaran, S. (2001). Test effort estimation using use case points.

10. Nakigudde, S. (2019). Project management models and software development project success. ResearchGate.
11. O'Regan, G. (2017). Software Project Management. SpringerLink.
12. Pérez, A. (2021). Errores a evitar en la planificacién de recursos de un proyecto. https://www.obsbusiness.school/blog/errores-

evitar-en-la-planificacion-de-recursos-de-un-proyecto. Accessed: Apr. 24, 2023.

13. Sehlhorst, S. (2007a). Software cost estimation with use case points — final calculations. Tyner Blain. Feb. 19, 2007.
14. Sehlhorst, S. (2007b). Software cost estimation with use case points — free excel spreadsheet. Tyner Blain. Feb. 20, 2007.
15. Vazquez, P.,, Panizzi, M., and Bertone, R. (2018). Estimacién del esfuerzo del proceso de implantacién de software basada en el

método de puntos de caso de uso. Technical report, Universidad Tecnolégica Nacional.

16. Alvarez, B. O. (2022). Herramienta para la gestién de actividades en los proyectos de software. Technical report, Universidad de

Antioquia.

Authors’ Biography

\]
Jose David Polo-Vanegas Systems engineering student at the University of Cérdoba.

https://revistasescuelanaval.com/obk/authorship
https://www.albokasoft.com/index.php/blog/80-proyecto-de-software-a-medida
https://www.albokasoft.com/index.php/blog/80-proyecto-de-software-a-medida
https://www.obsbusiness.school/blog/errores-evitar-en-la-planificacion-de-recursos-de-un-proyecto
https://www.obsbusiness.school/blog/errores-evitar-en-la-planificacion-de-recursos-de-un-proyecto

OnBoard Knowledge Journal 2025, 1,0 130f13

Yeinis Paola Espitia-Priolo Systems engineering student at the University of Cérdoba.

Daniel Jose Salas-Alvarez Master’s Degree in Computer Science from the Industrial University of
Santander.

Disclaimer/Editor’s Note: Statements, opinions, and data contained in all publications are solely those of the individual authors and
con-tributors and not of the OnBoard Knowledge Journal and/or the editor(s), disclaiming any responsibility for any injury to persons
or property resulting from any ideas, methods, instructions, or products referred to in the content.

	Introduction
	Contributions
	Related Works
	Methodology
	Results
	Conclusions
	References

