Análisis Comparativo de Tecnologías para Sistemas de Vigilancia Autónoma de Vehículos Acuáticos: Aplicabilidad en el Contexto Colombiano
Palabras clave:
Vigilancia marítima, Detección de embarcaciones, Edge computing, Imagen térmica, Sistemas radar, Vías navegables colombianas, Sistemas de vigilancia autónomaResumen
La monitorización y vigilancia de vehículos acuáticos ha adquirido creciente importancia a nivel global para garantizar la seguridad nacional, controlar el tráfico marítimo y fluvial, prevenir actividades ilícitas y proteger ecosistemas sensibles. Este estudio presenta un análisis comparativo integral de las tecnologías clave para sistemas de vigilancia autónoma (SVA) específicamente adaptadas a las condiciones ambientales colombianas. Mediante revisión sistemática de literatura y análisis comparativo, evaluamos sensores ópticos (cámaras RGB y térmicas), sistemas radar, sensores acústicos y arquitecturas de procesamiento (edge vs. cloud computing) bajo los escenarios operativos desafiantes típicos de los diversos entornos acuáticos de Colombia. Los resultados indican que las arquitecturas de edge computing combinadas con configuraciones híbridas de sensores proporcionan el rendimiento óptimo para las condiciones colombianas. El estudio concluye con recomendaciones específicas para despliegue a gran escala considerando las restricciones geográficas, climáticas y de infraestructura únicas del territorio colombiano.
Citas
C. Gamage, R. Dinalankara, J. Samarabandu, et al., "A comprehensive survey on the applications of machine learning techniques on maritime surveillance to detect abnormal maritime vessel behaviors," WMU Journal of Maritime Affairs, vol. 22, no. 3, pp. 343-367, 2023.
A. M. Rekavandi, L. Xu, F. Boussaid, et al., "A guide to image-and video-based small object detection using deep learning: case study of maritime surveillance," IEEE Transactions on Intelligent Transportation Systems, vol. 26, no. 1, pp. 123-145, 2025.
H. Li, L. Deng, C. Yang, J. Liu, Z. Gu, "Enhanced YOLO v3 tiny network for real-time ship detection from visual image," IEEE Access, vol. 9, pp. 16890-16900, 2021.
R. W. Liu, Y. Guo, J. Nie, Q. Hu, Z. Xiong, et al., "Intelligent edge-enabled efficient multi-source data fusion for autonomous surface vehicles in maritime internet of things," IEEE Transactions on Green Communications and Networking, vol. 6, no. 2, pp. 1054-1064, 2022.
Y. Guo, Y. Lu, R. W. Liu, "Lightweight deep network-enabled real-time low-visibility enhancement for promoting vessel detection in maritime video surveillance," The Journal of Navigation, vol. 75, no. 2, pp. 230-250, 2022.
A. Sathiyamurthy, S. G. S. Naidu, "Designing edge computing solutions for real-time vessel tracking and collision avoidance," Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, vol. 16, no. 2, pp. 45-62, 2025.
V. G. Santos, D. S. Pereira, L. B. P. Nascimento, et al., "CNN-based boat detection for environmental protection area monitoring," in Congresso Brasileiro de Automática, 2022, pp. 1-8.
H. H. Helgesen, F. S. Leira, T. I. Fossen, T. A. Johansen, "Tracking of ocean surface objects from unmanned aerial vehicles with a pan/tilt unit using a thermal camera," Journal of Intelligent & Robotic Systems, vol. 91, no. 3-4, pp. 775-793, 2018.
A. A. S. AlMansoori, I. Swamidoss, S. I. Niwas, "Analysis of different tracking algorithms applied on thermal infrared imagery for maritime surveillance systems," in Artificial Intelligence and Machine Learning for Multi- Domain Operations Applications II, vol. 11543, 2020.
Ø. K. Helgesen, E. F. Brekke, A. Stahl, Ø. Engelhardtsen, "Low altitude georeferencing for imaging sensors in maritime tracking," IFAC-PapersOnLine, vol. 53, no. 2, pp. 14256-14261, 2020.
Z. Shao, H. Lyu, Y. Yin, T. Cheng, X. Gao, et al., "Multi-scale object detection model for autonomous ship navigation in maritime environment," Journal of Marine Science and Engineering, vol. 10, no. 11, p. 1783, 2022.
C. Zhang, F. Xiao, "Overview of data acquisition technology in underwater acoustic detection," Procedia Computer Science, vol. 183, pp. 509-516, 2021.
G. D. Hastie, G. M. Wu, S. Moss, P. Jepp, et al., "Automated detection and tracking of marine mammals: A novel sonar tool for monitoring effects of marine industry," Aquatic Conservation: Marine and Freshwater Ecosystems, vol. 29, no. 6, pp. 1019-1030, 2019.
L. P. Perera, P. Oliveira, C. G. Soares, "Maritime traffic monitoring based on vessel detection, tracking, state estimation, and trajectory prediction," IEEE Transactions on Intelligent Transportation Systems, vol. 13, no. 3, pp. 1188-1200, 2012.
G. He, W. Wang, B. Shi, S. Liu, H. Xiang, et al., "An improved yolo v4 algorithm-based object detection method for maritime vessels," International Journal of Software Engineering and Applications, vol. 11, no. 4, pp. 23-35, 2022.
Z. Li, T. Liu, S. Li, L. You, S. Liang, et al., "An unmanned traffic command system for controlled waterway in inland river: an edge-centric IoT approach," Unmanned Systems, vol. 12, no. 3, pp. 445-462, 2024.
A. Copping, A. LiVecchi, H. Spence, et al., "Maritime renewable energy markets: power from the sea," Marine Technology Society Journal, vol. 52, no. 5, pp. 99-109, 2018.
J. C. Omondi, "Improving maritime surveillance in Kenya's remote coastal islands: application of renewable energy solutions," Master's thesis, World Maritime University, Malmö, Sweden, 2017.
F. Adamo, F. Attivissimo, C. G. C. Carducci, A. M. L. Lanzolla, "A smart sensor network for sea water quality monitoring," IEEE Sensors Journal, vol. 15, no. 5, pp. 2514-2522, 2014.
L. Delauney, C. Compere, M. Lehaitre, "Biofouling protection for marine environmental sensors," Ocean Science, vol. 6, no. 2, pp. 503-511, 2010.
M. A. Ullah, K. Mikhaylov, H. Alves, "Enabling mMTC in remote areas: LoRaWAN and LEO satellite integration for offshore wind farm monitoring," IEEE Transactions on Communications, vol. 69, no. 12, pp. 8744- 8758, 2021.
S. Pensieri, F. Viti, G. Moser, S. B. Serpico, A. Bordone, "Evaluating LoRaWAN connectivity in a marine scenario," Journal of Marine Science and Engineering, vol. 9, no. 11, p. 1218, 2021.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Iván Camilo Leiton Murcia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores retienen los derechos de copia (copyrigth) y ceden a la revista el derecho de publicación del trabajo bajo licencia Creative Commons Attribution License, que permite a terceros utilizar lo publicado siempre que hagan referencia al autor o autores del trabajo, y a su publicación en DERROTERO.
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-Compartir Igual 4.0 Internacional. 



a